#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Data Frames
Reading Assignments
Make sure to read the following sections in the textbook: R Coding Basics, https://www.gastonsanchez.com/R-coding-basics/
Why Data Frames?
- Learning how to manipulate data frames is among the most important data computing skills in R.
- Two primary approaches for manipulating data frames:
- In base R, i.e. the “traditional” or “classic” approach \(\Leftarrow\) covered in this chapter
- In tidyverse, i.e. a modern version \(\Leftarrow\) Discussed later in this class
Data Frames
- A data frame is a special type of R list.
- In most cases, a data frame is internally stored as a list of vectors or factors, columnwise.
Example:
Dimension of Data Frames
Check the Dimension of mtcars
dim(mtcars)
#> [1] 32 11
nrow(mtcars)
#> [1] 32
ncol(mtcars)
#> [1] 11
There are 32 rows and 11 columns in mtcars
.
Structure
Show the structure or summary of mtcars
summary(mtcars)
#> mpg cyl disp hp
#> Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
#> 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
#> Median :19.20 Median :6.000 Median :196.3 Median :123.0
#> Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
#> 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
#> Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
#> drat wt qsec vs
#> Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
#> 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
#> Median :3.695 Median :3.325 Median :17.71 Median :0.0000
#> Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
#> 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
#> Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
#> am gear carb
#> Min. :0.0000 Min. :3.000 Min. :1.000
#> 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
#> Median :0.0000 Median :4.000 Median :2.000
#> Mean :0.4062 Mean :3.688 Mean :2.812
#> 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
#> Max. :1.0000 Max. :5.000 Max. :8.000
str(mtcars)
#> 'data.frame': 32 obs. of 11 variables:
#> $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
#> $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
#> $ disp: num 160 160 108 258 360 ...
#> $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
#> $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
#> $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
#> $ qsec: num 16.5 17 18.6 19.4 17 ...
#> $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
#> $ am : num 1 1 1 0 0 0 0 0 0 0 ...
#> $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
#> $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
attributes(mtcars)
#> $names
#> [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
#> [11] "carb"
#>
#> $row.names
#> [1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"
#> [4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant"
#> [7] "Duster 360" "Merc 240D" "Merc 230"
#> [10] "Merc 280" "Merc 280C" "Merc 450SE"
#> [13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood"
#> [16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128"
#> [19] "Honda Civic" "Toyota Corolla" "Toyota Corona"
#> [22] "Dodge Challenger" "AMC Javelin" "Camaro Z28"
#> [25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2"
#> [28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino"
#> [31] "Maserati Bora" "Volvo 142E"
#>
#> $class
#> [1] "data.frame"
Names
Column Names
names(mtcars)
#> [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
#> [11] "carb"
colnames(mtcars)
#> [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
#> [11] "carb"
Row Names
rownames(mtcars)
#> [1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"
#> [4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant"
#> [7] "Duster 360" "Merc 240D" "Merc 230"
#> [10] "Merc 280" "Merc 280C" "Merc 450SE"
#> [13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood"
#> [16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128"
#> [19] "Honda Civic" "Toyota Corolla" "Toyota Corona"
#> [22] "Dodge Challenger" "AMC Javelin" "Camaro Z28"
#> [25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2"
#> [28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino"
#> [31] "Maserati Bora" "Volvo 142E"
Both Column and Row Names
dimnames(mtcars)
#> [[1]]
#> [1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"
#> [4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant"
#> [7] "Duster 360" "Merc 240D" "Merc 230"
#> [10] "Merc 280" "Merc 280C" "Merc 450SE"
#> [13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood"
#> [16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128"
#> [19] "Honda Civic" "Toyota Corolla" "Toyota Corona"
#> [22] "Dodge Challenger" "AMC Javelin" "Camaro Z28"
#> [25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2"
#> [28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino"
#> [31] "Maserati Bora" "Volvo 142E"
#>
#> [[2]]
#> [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
#> [11] "carb"
attributes(mtcars)
#> $names
#> [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
#> [11] "carb"
#>
#> $row.names
#> [1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"
#> [4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant"
#> [7] "Duster 360" "Merc 240D" "Merc 230"
#> [10] "Merc 280" "Merc 280C" "Merc 450SE"
#> [13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood"
#> [16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128"
#> [19] "Honda Civic" "Toyota Corolla" "Toyota Corona"
#> [22] "Dodge Challenger" "AMC Javelin" "Camaro Z28"
#> [25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2"
#> [28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino"
#> [31] "Maserati Bora" "Volvo 142E"
#>
#> $class
#> [1] "data.frame"
Sample
head(mtcars)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
head(mtcars, 10)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
tail(mtcars)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2
tail(mtcars, 2)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Maserati Bora 15.0 8 301 335 3.54 3.57 14.6 0 1 5 8
#> Volvo 142E 21.4 4 121 109 4.11 2.78 18.6 1 1 4 2
Selecting elements in Data Frames
Use data.frame dat
as an example below.
<- data.frame(
dat name = c('Leia', 'Luke', 'Han'),
gender = c('female', 'male', 'male'),
height = c(1.50, 1.72, 1.80),
jedi = c(FALSE, TRUE, FALSE),
stringsAsFactors = FALSE
)
dat#> name gender height jedi
#> 1 Leia female 1.50 FALSE
#> 2 Luke male 1.72 TRUE
#> 3 Han male 1.80 FALSE
Select Cell/Row/Column \(\Rightarrow\) similar to matrix operations
dataframe[RowIndex, ColIndex]
# select value in row 1 and column 1
1,1]
dat[
# select values in these cells
1:2,3:4] # Row 1 to 2, col 3 to 4
dat[2:3, c(1,4)] # Row 2 to 3, col 1 and 4
dat[-2, -3] # Not row 2 or col 3 dat[
1, ] # selecting first row
dat[-2, ] # selecting rows except row 2 dat[
3] # selecting third column
dat[, -1] # selecting columns except col 1 dat[,
- More Options to select columns
Five equivalent methods
$mpg # Method I
mtcars1] # Method II
mtcars[,1]] # Method III
mtcars[["mpg"] # Method IV
mtcars[, "mpg"]] # Method V mtcars[[
#> [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4
#> [16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7
#> [31] 15.0 21.4
Modifying Data Frames
Temporarily vs Permanently Modifying the Values
-1]
dat[, #> gender height jedi
#> 1 female 1.50 FALSE
#> 2 male 1.72 TRUE
#> 3 male 1.80 FALSE
dat#> name gender height jedi
#> 1 Leia female 1.50 FALSE
#> 2 Luke male 1.72 TRUE
#> 3 Han male 1.80 FALSE
Q: Why the first column of dat
was NOT deleted?
A: dat[, -1]
only temporarily modifies the values. To make the permanently change, we should use dat <- dat[, -1]
. That is, new data frame overwrites the old one. Of course, you can assign it to a new name too, like dat_new <- dat[, -1]
.
Similar Examples:
# vector of weights
<- c(49, 77, 85)
weight
# adding weights vector to dat
<- cbind(dat, weight)
dat
dat#> name gender height jedi weight
#> 1 Leia female 1.50 FALSE 49
#> 2 Luke male 1.72 TRUE 77
#> 3 Han male 1.80 FALSE 85
Direct modifying the column commands
# Add new_column permanently
$new_column <- c('a', 'e', 'i')
dat
dat#> name gender height jedi weight new_column
#> 1 Leia female 1.50 FALSE 49 a
#> 2 Luke male 1.72 TRUE 77 e
#> 3 Han male 1.80 FALSE 85 i
# Delete new_column permanently
$new_column <- NULL
dat
dat#> name gender height jedi weight
#> 1 Leia female 1.50 FALSE 49
#> 2 Luke male 1.72 TRUE 77
#> 3 Han male 1.80 FALSE 85
Modifying Data Frames (continue)
Adding/Deleting columns
Adding Columns Method I:
$new_column <- c('a', 'e', 'i')
dat
dat#> name gender height jedi weight new_column
#> 1 Leia female 1.50 FALSE 49 a
#> 2 Luke male 1.72 TRUE 77 e
#> 3 Han male 1.80 FALSE 85 i
Adding Columns Method II:
# vector of weights
<- c(49, 77, 85)
weight
# adding weights vector to dat
<- cbind(dat, weight)
dat
dat#> name gender height jedi weight new_column weight
#> 1 Leia female 1.50 FALSE 49 a 49
#> 2 Luke male 1.72 TRUE 77 e 77
#> 3 Han male 1.80 FALSE 85 i 85
Deleting Columns
$weight <- NULL
dat dat
Renaming a column
names(dat)
#> [1] "name" "gender" "height" "jedi" "weight"
#> [6] "new_column" "weight"
# changing gender to sex
attributes(dat)$names[2] <- "sex"
# Equivalently,
names(dat)[2] <- "sex"
colnames(dat)[2] <- "Sex"
#names(dat)
Moving Columnns
<- c("name", "jedi", "height", "weight", "sex")
reordered_names <- dat[ ,reordered_names]
dat
dat#> name jedi height weight sex
#> 1 Leia FALSE 1.50 49 female
#> 2 Luke TRUE 1.72 77 male
#> 3 Han FALSE 1.80 85 male
Transforming Columns
Recall 1 kg = 2.20462 pounds (i.e. 1 pounds = 0.453592 kg)
$height <- dat$height * 100 # converting height to centimeters
dat
"weight"] <- dat[ ,"weight"] * 2.20462 # converting weight to pounds
dat[ ,
<- transform(dat, weight = weight * 0.453592) # Converting weight back to kgs dat
Creating Data Frames
Majority of the time, data frames are read from external data files, or are built-in data frames in R packages.
From time to time, you need to create some data table manually.
- Option 1:
data.frame()
<- data.frame(
dat name = c('Anakin', 'Padme', 'Luke', 'Leia'),
gender = c('male', 'female', 'male', 'female'),
height = c(1.88, 1.65, 1.72, 1.50),
weight = c(84, 45, 77, 49),
stringsAsFactors = TRUE
)
dat#> name gender height weight
#> 1 Anakin male 1.88 84
#> 2 Padme female 1.65 45
#> 3 Luke male 1.72 77
#> 4 Leia female 1.50 49
str(dat)
#> 'data.frame': 4 obs. of 4 variables:
#> $ name : Factor w/ 4 levels "Anakin","Leia",..: 1 4 3 2
#> $ gender: Factor w/ 2 levels "female","male": 2 1 2 1
#> $ height: num 1.88 1.65 1.72 1.5
#> $ weight: num 84 45 77 49
For comparison purpose
# If stringsAsFactors = FALSE
<- data.frame(
dat name = c('Anakin', 'Padme', 'Luke', 'Leia'),
gender = c('male', 'female', 'male', 'female'),
height = c(1.88, 1.65, 1.72, 1.50),
weight = c(84, 45, 77, 49),
stringsAsFactors = FALSE
)
str(dat)
#> 'data.frame': 4 obs. of 4 variables:
#> $ name : chr "Anakin" "Padme" "Luke" "Leia"
#> $ gender: chr "male" "female" "male" "female"
#> $ height: num 1.88 1.65 1.72 1.5
#> $ weight: num 84 45 77 49
- Option 2:
list()
\(\Rightarrow\)data.frame()
# another way to create a basic data frame
<- list(
lst name = c('Anakin', 'Padme', 'Luke', 'Leia'),
gender = c('male', 'female', 'male', 'female'),
height = c(1.88, 1.65, 1.72, 1.50),
weight = c(84, 45, 77, 49)
)
<- data.frame(lst, stringsAsFactors = TRUE)
tbl
tbl#> name gender height weight
#> 1 Anakin male 1.88 84
#> 2 Padme female 1.65 45
#> 3 Luke male 1.72 77
#> 4 Leia female 1.50 49
str(tbl)
#> 'data.frame': 4 obs. of 4 variables:
#> $ name : Factor w/ 4 levels "Anakin","Leia",..: 1 4 3 2
#> $ gender: Factor w/ 2 levels "female","male": 2 1 2 1
#> $ height: num 1.88 1.65 1.72 1.5
#> $ weight: num 84 45 77 49
stringsAsFactors
= TRUE
: Convert character vectors into factors (default option in older R)= FALSE
: Prevent data.frame() from converting strings into factors (default option in newer R)- Default option changed before and after 3.1.0 versions of R